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From shape similarity to shape complementarity:
toward a docking theory
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Formal relations between similarity and docking are analyzed, and a general dock-
ing theory is proposed for colored mixtures of multivariate distributions. X and Y being
two colored mixtures with given distributions, their shape complementarity coefficient
is defined as the lower bound of the variance of (X − Y )′ · (X − Y ), taken over the
set of joint distributions of X and Y . The docking is performed via minimization of
the shape complementarity coefficient for all translations and rotations of the mixtures.
The properties of the docking criterion are derived, and are shown to satisfy the prac-
tical requirements encountered in molecular shape analysis.
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1. Introduction

Molecular shape analysis is usually viewed, either from shape similarity, or
from shape complementarity. A vast literature is available on similarity (e.g. see
[1–4] and references cited). Although similarity is deduced from some virtual
superposition of molecules by means of the computer, shape complementarity is
related to real situations, such as in the key–lock model of enzyme–ligand com-
plexes. Searching for shape complementarity by computer is usually called dock-
ing, and an abundant literature is also available (e.g. see [5] and references cited).
Another difference between similarity and docking procedures is that superpos-
ing molecules is viewed as a global or local volume overlap operation, although
docking is mostly viewed as a local surface interaction.

The superposition and the docking of two molecules by computer have a
common feature: a scoring function is selected as an objective criterion of simi-
larity or complementarity, and this criterion is optimized by rotation and trans-
lation of one of the molecules. Thus, the basic requirement of most similarity
and docking procedures is to define a suitable criterion measuring the degree of
similarity or complementarity of the shapes.
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The scope of this paper is to show that both similarity and docking may
be performed by computer via a common general molecular model introduced
recently, called the colored mixture model [6], and that a docking criterion is
available for this model, thus working both for discrete and continuous sets,
with or without charges. Although a similarity criterion having this properties
is known [6], it seems that no docking criterion having them was previously
reported in the literature.

2. Theory

2.1. Colored mixtures

We define a probability space (C, A, P ), where C is a non-empty set called
the space of colors, A is a σ -algebra defined on C, and P is a probability mea-
sure. In its simplest form, C is a finite set of non-ordered elements (the col-
ors), without any particular structure. C may have an infinite cardinality, e.g. it
may be isomorphic to R. Then, we define a mapping � from C on the space
of the probability distributions on (Rd, B), where B is the Borel σ -algebra of
Rd . In other words, to each color c is associated a d-variate distribution P̃c =
�(c).

The main idea behind the colored mixture concept, is a two-step process:
get a color from the P distribution, then get a d-tuple from the distribution
P̃c = �(c). We consider the measurable space (C × Rd, A ⊗ B), and we consider
a random variable (K, X) on this compound space. The value of the distribution
function of P̃c at x is a conditional probability noted F̃ (x|c).

X is called a colored mixture when its distribution function F satisfies to
the Bayesian expression:

F(x) =
∫

c∈C

F̃ (x|c) · P(dc). (1)

The differences between X and a random variable on Rd having a mixture
distribution, in its usual sense [7], are that, for the latter, there is no space of
colors, c is a finite integer index, and a finite summation is used rather than
a Lebesgue–Stieltjes integral. When K is almost surely equal to some constant
(e.g. when C contains only one element), there is no essential difference between
X and an ordinary random vector.

2.2. The colored mixture model

We consider the couple of random variables ((K1, X1), (K2, X2)), where
X1 and X2 are colored mixtures. The joint distribution of (K1, K2) is P12. We
have also a couple of mappings (�1, �2) and then, for each couple of colors
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(c1, c2), we have a couple of d-variate distributions (�1(c1), �2(c2)) = (P̃c1, P̃c2).
This latter couple has a joint distribution function, and its value at (x1, x2) is
a conditional probability noted W̃ (x1, x2|c1, c2). The joint distribution function
W(x1, x2) of (X1, X2) is got by integration:

W(x1, x2) =
∫

c1∈C

∫
c2∈C

W̃ (x1, x2|c1, c2) · P12(dc1, dc2). (2)

Now, the colored mixture model is defined from the following supplemen-
tary assumption: K1 and K2 are almost surely equal. It means that K1 and
K2 are identically distributed and fully correlated, as expressed in equation (3),
where δ is the Dirac delta function:

P12(dc1, dc2) = P(dc1) · δ[c2=c1]dc2. (3)

Using equation (3) for integrating (2), the joint distribution function of
(X1, X2) is:

W(x1, x2) =
∫

c∈C

W̃ (x1, x2|c) · P(dc). (4)

In general, the colored mixtures X1 and X2 cannot be independent.
For example, consider a set C containing two colors c and c′ such that

P(c) = P(c′) = 1/2, and the colored mixtures X1 and X2 such that: {Prob(X1 =
a|c) = 1; Prob(X1 = b|c′) = 1} and {Prob(X2 = a|c) = 1; Prob(X2 = b|c′) = 1},
where a and b are some distinct constants in Rd . Clearly, the marginals X1 and
X2 are such that Prob(X1 = a) = 1/2, Prob(X1 = b) = 1/2, Prob(X2 = a) = 1/2,
Prob(X2 = b) = 1/2, although their joint distribution is such that Prob(X1 =
a, X2 = a) = 1/2, Prob(X1 = b, X2 = b) = 1/2. Since Prob(X1 = a, X2 = a)

differs from Prob(X1 = a) · Prob(X2 = a), X1 and X2 are dependent.
The correlation in the space of colors induces a correlation between the

random vectors. When C contains only one element, there is no constraint on
the joint distribution of X1 and X2.

The colored mixture model will be further assumed.

2.3. The finite discrete colored mixture model

The finite discrete colored mixture model is a colored mixture model satis-
fying to the conditions (a) to (e), given below.

(a) The mixing distribution of the colors is discrete and finite.

(b) The mixed distributions are discrete and finite.
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Conditions (a) and (b) means that X1 and X2 are finite colored mixtures
of finite discrete distributions. The joint probability of the couple (X1, X2) is
deduced from equation (4):

Prob(x1, x2) =
∑

c

W̃c(x1, x2) · P(c). (5)

In equation (5), c, x1 and x2, take a finite number of values. Thus, for each
c value, the probabilities W̃c(x1, x2) are the elements of a rectangular bistochastic
matrix. Then, the probabilities Prob(x1, x2) are the elements of a rectangular bis-
tochastic matrix Q, which has a block diagonal structure: each rectangular block
is biunivocally associated to a color, and all elements of Q outside the blocks are
null.

The number of colors is k, the numbers of lines of the blocks are m1, m2, . . . ,

mk, and the numbers of columns of the blocks are n1, n2, . . . , nk. We set:

m =
c=k∑
c=1

mc, and n =
c=k∑
c=1

nc.

We assume that the conditions (a) and (b) are satisfied and we add three
supplementary conditions:

(c) For each color, the two marginals of W̃c are distributed on an equal
number of values.

(d) For each color, the two marginals of W̃c are uniformly distributed.

(e) The marginals X1 and X2 are uniformly distributed.

Condition (c) means that Q has square blocks, and mc = nc for c = 1 to
c = k. It follows that Q is a block diagonal square matrix.

Condition (d) means that each block of Q has all its line sums equal to
P(c)/mc, and all its column sums equal to P(c)/nc, c being the color associated
to the block.

Now, all conditions (a) to (e) are assumed to be satisfied. The products
P(c)/nc and P(c)/mc are equal to 1/n and do not depend on c, because each
of the n line sums and n column sums of Q is equal to 1/n, n being the number
of lines (or columns) of Q. In other words, for each of the colored mixtures X1

and X2, the probability to get a color is proportional to the number of points
of the distribution attached to this color: P(c) = nc/n.

Assuming the finite discrete colored mixture model, we consider the set of
all values taken by the elements {nQi1i2} of the matrix nQ. These elements are
all non-negative, some of them being always null, each line of nQ sums to 1,
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and each column of nQ sums to 1. Thus {nQi1i2} is a closed bounded convex set,
and its extreme values are such that each square block of nQ is a permutation
matrix, and nQ itself is a permutation matrix.

Two particular situations of the finite discrete colored mixture model are of
special interest. They are better described using a non-probabilistic formulation:

• Setting k = 1: there are two sets of n points, the 2n points having all
the same color, or simply having no color at all. The extreme values of
{nQi1i2} are the n! permutation matrices. This is a non-discernible parti-
cles model.

• Setting k = n: there are n colors. For each of the two sets of n points,
each point is biunivocally associated to a color, and thus there is a one-
to-one pairwise correspondence between the two sets of n points. More-
over, the n blocks having only one element, nQ is always the identity
matrix. This is a discernible particles model.

3. Measuring similarity with the Wasserstein distance

As mentioned, the similarity concept is related to the distance between ele-
ments of a metric space. There are many probability metrics measuring the dis-
tance between two distributions [8]. Among them, the Wasserstein distance D

has received much attention, partly due to its connections with the Monge–Kan-
torovitch transportation problem [9]. When X1 and X2 are two random vectors,
D is expressed from the lower bound of a moment (i.e. an expectation), taken
over the set of all the joint distributions of the couple (X1, X2):

D2 = Inf{W }E[(X1 − X2)
′ · (X1 − X2)]. (6)

Both X1 and X2 are assumed to have a finite inertia, in order to ensure
the existence of the expectation in equation (6). Now, assuming that we are in
the context of the colored mixture model, the set of the joint distributions of the
couple (X1, X2) is a non-empty subset of the previous one, because adding col-
ors introduces constraints on this set. Thus, we still use equation (6) to define
the distance between colored mixtures. The metric properties of the Wasserstein
distance are obviously kept.

In many practical situations, rotations and translations of one of the col-
ored mixtures are considered. We assume that X1 is fixed and that X2 is submit-
ted to a rotation R and a translation t . Now, we compute the similarity from the
minimized Wasserstein distance over the set of rotations and translations. This
minimized distance is a similarity coefficient S12 called here the intrinsic Wasser-
stein distance between X1 and X2:

S12 = Min{R,t}D. (7)
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The optimal translation t is got when X1 and X2 have the same expecta-
tion, and the optimal rotation is known for d = 2 and d = 3 [6]. However, the
optimal joint distribution in equation (6) is not ensured to exist [8,9].

When X2 is distributed as a mirror image of X1, the squared intrinsic dis-
tance, normalized to the common inertia T of X1 and X2, is proportional to the
chiral index χ [6]:

χ = d · S2
12/4T . (8)

Now X1 and X2 are not necessarily distributed as mirror images. We con-
sider finite colored mixtures of finite discrete distributions, i.e. the conditions (a)
and (b) in Section 2.3 are satisfied. Looking at equation (5) shows that mini-
mizing any absolute moment of the couple (X1, X2) leads to minimizing a lin-
ear function under linear constraints, for which the probabilities P(c) are fixed
parameters, and the unknown quantities are either the probabilities W̃c(x1, x2),
or the non-null elements of the rectangular bistochastic matrix Q. Clearly, the set
of linear constraints is a closed bounded convex set, and the minimized moment
is reached at least on one of the extremal points of the convex polytope of the
constraints [10].

We consider now the finite discrete colored model, i.e. the five conditions
(a) to (e) in section 2.3, are satisfied. Discarding rotations and translations, com-
puting S12 or minimizing any absolute moment leads to the enumeration of the
permutation matrices nQ, n being the number of points attached to the distri-
bution of X1 or X2. From equations (6) and (7), we have:

S2
12 = Min{R,t,Q}[

i1=n∑
i1=1

i2=n∑
i2=1

(x1i1
− x2i2

)′ · (x1i1
− x2i2

) · nQi1i2/n]. (9)

Since Q is a permutation matrix, n2−n elements Qi1i2 are null, and the oth-
ers are equal to 1. It follows that the index i2 is biunivocally associated to i1 via
the permutation q associated with the permutation matrix Q, i.e. i2 = q(i1) and
equation (9) is rewritten:

S2
12 = Min{R,t,q}[

i=n∑
i=1

(x1i
− x2q(i)

)′ · (x1i
− x2q(i)

)]/n. (10)

The quantity S12 in equation (10) is just the well-known Root Mean Square
(RMS) criterion of spatial alignment, which is widely used in chemistry and bio-
chemistry (see [11] and references cited). It is also known in data analysis as
the pure rotation Procrustes criterion for superposing optimally two groups of
points: see appendix A in [6] for various Procrustes methods and their analyti-
cal solution.

S2
12 is the mean of the population of the n squared distances between the

two groups of n points, minimized for all rotations, translations, and for all
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correspondences q allowed by the color of the points. When the number of col-
ors is k = 1 (non-discernible particles model), it is the RMS spatial alignment
without prefixed pairwise correspondence, and when k = n (discernible parti-
cles model), it is the usual RMS spatial alignment, with prefixed (or implicit)
pairwise correspondence. The RMS method is therefore extended to continuous
and/or infinite sets of points, colored or not, provided that their inertia is finite.

4. Application of the colored mixture model to docking

It is proposed here to define a shape complementarity coefficient, or dock-
ing coefficient δ, from a formal analog of equation (6), in which the variance of
(X1 − X2)

′ · (X1 − X2) is used rather than its expectation. The intrinsic dock-
ing coefficient �12 is the minimzed docking coefficient, for all rotations R and
translations t of the colored mixture X2:

Z = (X1 − X2)
′ · (X1 − X2), (11)

δ2 = Inf{W }Var(Z), (12)

�12 = Min{R,t}δ. (13)

Both colored mixtures X1 and X2 are assumed to have finite four-order
moments, in order to ensure the existence of Var(Z).

We consider finite colored mixtures of finite discrete distributions, i.e. the
conditions (a) and (b) in Section 2.3 are satisfied. Looking at equation (5) shows
that minimizing Var(Z) = E[Z2]−(E[Z])2, leads to minimizing a quadratic func-
tion under linear constraints, for which the probabilities P(c) are fixed param-
eters, and the unknown quantities are either the probabilities W̃c(x1, x2), or the
non-null elements of the rectangular bistochastic matrix Q defined in section 2.3.
As observed previously, the set of linear constraints is a closed bounded convex
set, but, due to the presence of the quadratic term (E[Z])2, we have a quadratic
programming problem rather than a linear programming problem. Let Q∗ be a
solution of this problem. As known, any point of the polytope of the constraints
is expressible as a convex linear combination of the extremal points QI of this
polytope [10], thus Q∗ = ∑

λIQI , with λI � 0 and
∑

λI = 1. The variance
being obviously a concave function f (Q) of the unknown matrix Q (i.e. −f (Q)

is convex), it follows that f (Q∗) �
∑

λIf (QI ), and since no quantity f (QI ) is
lower than Min{I }f (QI ), it follows that f (Q∗) � Min{I }f (QI ), which is impossi-
ble unless the equality occurs, meaning that the minimized variance is reached at
least on one of the extremal points of the convex polytope of the constraints.

We consider now the finite discrete colored mixture model, i.e. the five
conditions (a)–(e) in Section 2.3 are satisfied. As for the similarity coefficient,
computing the docking coefficient δ leads to enumeration of the permutation
matrices nQ, n being the number of points attached to the distribution of X1
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or X2. Still denoting by q the permutation associated to the permutation matrix
Q, it follows that:

zi = (x1i
− x2q(i)

)′ · (x1i
− x2q(i)

) (14)

δ2 = Min{q}Var{z1; z2; . . . ; zn} (15)

�2 = Min{R,t,q}Var{z1; z2; . . . ; zn} (16)

The proof of equation (15) or (16) is identical to that of equation (10) in
Section 3, except that the mean of the population of the n quantities zi , is here
replaced by its variance.

When all n colors are different, there is a one-to-one pairwise correspon-
dence between the two sets of n points (discernible particles model). For this sit-
uation, using the variance was recently proposed [12] as a docking criterion. It
is like the usual RMS spatial alignment method, except that the variance is used
rather than the mean, and the docking is performed rather than the superposi-
tion. Except in [12], and despite its simplicity, our variance-based criterion was
lacking in the literature (see [5] for a recent review).

Computing the intrinsic docking coefficient � in (16), is performed via enu-
meration of all correspondences (i.e. permutations) allowed by the colors of the
points, after having computed the optimal translation and rotation. The analyti-
cal expressions of the optimal translation and the optimal planar rotation in (16)
are known [12], and are extended to the general colored mixture model in appen-
dices A and B.

Solving the full 3D docking problem requires both the optimal translation
and the optimal spatial rotation. This is done for equation (16) with an iterative
procedure based on a partly analytical solution, which leads to generating ran-
dom initial rotations rather than random initial rotations plus translations [12].
Since the sampling of initial values is made for rotations only, the global mini-
mum is retrieved at low computational cost, although usual docking procedures
failed without some additional knowledge about the optimum to be computed,
discarding the docking criterion [5].

The iterative numerical procedure solving the full 3D docking problem in
[12] could be also extended to the general colored mixture model, provided that
the joint distribution W of the couple (X1, X2) is fixed (see in appendix A.5 in
ref. [6] how 3D rotations are handled). Then, the lower bound of the variance,
taken over the set of the joint distributions W , has to be computed to obtain the
intrinsic docking coefficient. As no specific algorithm is being actually devoted to
this computation, standard numerical methods should be used.

5. Discussion and conclusion

The intrinsic docking coefficient � defined in equation (16) from the col-
ored mixture model, may be normalized if needed. It has the major advantage of
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being able to work both with discrete and continuous sets or distributions, even
when one of the sets is discrete and the other is continuous. Infinite distributions
are allowed, provided that their four-order moments are finite (e.g. gaussian mix-
tures).

A molecule, or a molecular fragment, may be modelized as a colored
mixture of two distributions: the negative charges distribution and the posi-
tive charges distribution. It means that there are two colors, their prior prob-
ability being respectively proportional to the total negative charge and to the
total positive charge of the fragment. For a neutral fragment, these two prior
probabilities P1 and P2 are both equal to 1/2. When non-neutral fragments are
considered, the colored mixture model requires that the fragments receive a com-
mon ratio P1/P2.

Although the colored mixture model is adequate for similarity problems,
it should be applied differently for docking. Since there is repulsion between
charges of the same sign, the geometric docking has to be performed between
distributions of opposite signs. Thus, docking two molecular fragments is per-
formed such that the first color is attributed to the negative charges distribution
in one of the fragments, and to the positive charges distribution in the other frag-
ment, and conversely for the second color. A strictly geometric molecular model,
i.e. without charges or with negative charges only, is of course handled with a
unique color, and the docking is performed with two ordinary distributions, one
modeling the static fragment, the other modeling the moving fragment.

Applying the colored mixture model to molecular docking needs a further
assumption. Since molecular docking is often viewed as a local surface interac-
tion, thus the geometric support of the underlying distributions have all a null
volume.

The docking theory presented here has several advantages, including the
simplicity of the docking creterion, but it also has a drawback: some situations
lead to a null intrinsic docking coefficient, although they do not correspond to a
satisfactory docking, from a practical point of view. An example is derived when
a distribution is docked to its translated image. Obviously, � = 0, but, except
for a flat set (parallelism), the final docking may be such that the docked dis-
tributions are intersecting. It is proposed to add some further constraints in the
minimization problem, in order to avoid this drawback. In other words, � = 0 is
a condition necessary to have a satisfactory docking, but sometimes it does not
suffice.

The freeware DOG (http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.
html) performs the geometric docking between two sets of n points pairwise
associated [12]. Extending the program when the two sets have different cardinal-
ities is under investigation, in order to have an automatic detection of the subsets
having the best docking (relative to the size of the subsets). The optimal cor-
respondence between the subsets has to be computed, as in the CSR similarity
freeware [11] (same website as above).
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Appendix A

We look for the minimization of Var(Z) in equation (11), when X1 is fixed
and a translation t is added to X2, provided that the joint distribution of the
couple (X1, X2) is fixed:

Z = (X1 − (X2 + t))′ · (X1 − (X2 + t)), (A.1)

V ∗ = Min{t}Var(Z). (A.2)

We set:

τ = t + E[X2] − E[X1], (A.3)

G = (X2 − E[X2]) − (X1 − E[X1]), (A.4)

KG = E[G · G′], (A.5)

γ = E[G · G′ · G]. (A.6)

Thus, E[G] = 0, Z = (G + τ)′ · (G + τ), KG is the covariance matrix of G,
and after some rearrangement:

Var(Z) = Var(G) + 4τ ′ · KG · τ + 4τ ′ · γ. (A.7)

Assuming that KG is invertible, the optimal translation t∗ is:

t∗ = τ ∗ − E[X2] + E[X1], (A.8)

τ ∗ = −K−1
G · γ /2, (A.9)

V ∗ = Var(G) − γ · K−1
G · γ. (A.10)

Equation (A.10) is formally identical to equation (9) in [12], which was
obtained for the discrete colored model with all n different colors.

When KG is not invertible, the difference of the centered colored mixtures
[X2 − E[X2]] and [X1 − E[X1]] is subdimensional. The components of τ ∗ have to
be found in a subspace, and its other components can take any value.

Appendix B

We look for the minimization of Var(Z) in equation (11), when X1 is fixed
and X2 is submitted to a rotation R, provided that the joint distribution of the
couple (X1, X2) is fixed:

Z = (X1 − R · X2)
′ · (X1 − R · X2), (B.1)

V ∗ = Min{R}Var(Z). (B.2)

Moreover, we assume that the space is bidimensional, i.e. the planar rota-
tion R, which is associated to the rotation angle r, is a linear combination of
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the identity matrix I (i.e. the null rotation), and of the matrix 	 associated to
the +90 degrees rotation:

R = I · cos(r) + 	 · sin(r), (B.3)

Z = (X′
1 · X1 + X′

2 · X2) − 2(X′
1 · X2) · cos(r) − 2(X′

1 · 	 · X2) · sin(r). (B.4)

Cov denoting the covariance operator, we set:

T T = Var(X′
1 · X1 + X′

2 · X2), (B.5)

CC = Var(X′
1 · X2), (B.6)

SS = Var(X′
1 · 	 · X2), (B.7)

CT = Cov(X′
1 · X2, X

′
1 · X1 + X′

2 · X2), (B.8)

ST = Cov(X′
1 · 	 · X2, X

′
1 · X1 + X′

2 · X2), (B.9)

and

CS = COV(X′
1 · X2, X

′
1 · 	 · X2). (B.10)

It follows:

Var(Z) = T T + 4 · CC · cos2(r) + 4 · SS · sin2
(r)

−4 · CT · cos(r) − 4 · ST · sin(r) + 8 · CS · sin(r) cos(r) (B.11)

1
4

∂Var(Z)

∂r
= cos(2r) · (2 · CS) − sin(2r) · (CC − SS) + sin(r) · CT

− cos(r) · ST (B.12)

Equation (B.12) is formally identical to equation (14) in [12], generalizing
the result obtained for the discrete colored model with all n different colors.
The trigonometric expression in (B.12) is converted to a quartic polynomial of
the unknown quantity tg(r/2), and this polynomial is shown to have indeed real
roots [12].
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